Calculus I	Name:
Study Guide 10	Class:
Due Date:	

No Work \Leftrightarrow No Points

Use Pencil Only \Leftrightarrow Be Neat & Organized

- 1. Find f'(x) for (a) (2 points) $f(x) = \sin x + \cos x$
 - (b) (2 points) $f(x) = \sin x \cos x$
 - (c) (2 points) $f(x) = 2x^2 + \tan x$
 - (d) (2 points) $f(x) = \cot x \csc x$
 - (d) _____

(e) (2 points)
$$f(x) = x^2 \cdot \sec x$$

(e) _____

- 2. If f(3)=2 and f'(3)=4, then find g'(3) if (a) (3 points) $g(x)=3x^2-5xf(x)$

 - (c) (3 points) $g(x) = \frac{2x+1}{f(x)}$
 - (d) (3 points) $g(x) = \frac{x^3}{[f(x)]^2}$

(d) _____

3. Find
$$\frac{dy}{dx}$$
 for

(a) (3 points)
$$y = sin(x^3)$$

(b) (3 points)
$$y = 4\cos^5(x^2)$$

(c) (3 points)
$$y = \frac{1}{2} \tan(x^2)$$

(d) (3 points)
$$y = \cos^3(\sin 2x)$$

(e) (2 points)
$$y = \cot^2 x - \csc^2 x$$

(e) _____

4. (3 points) Find
$$\frac{d^2}{dx^2} [f(x^2)]$$
.

4. _____

5. (4 points) Find the equation of the tangent line to the graph of $f(x)=1+x+\sin x$ at x=0 .

5.

6. (4 points) Find the equation of the normal line to the graph of $f(x) = \frac{\sin x}{1 + \cos x}$ at the point (0,0).

6.

7. (3 points) Derive a formula in simplest form for $\frac{d}{dx} \left[\sin^2 x \right]$.

7.